Thermodynamics of interleaflet cavitation in lipid bilayer membranes.

نویسندگان

  • Shay M Rappaport
  • Alexander M Berezhkovskii
  • Joshua Zimmerberg
  • Sergey M Bezrukov
چکیده

Interleaflet cavitation in lipid bilayer membranes, or, shortly, intramembrane cavitation (IMC), is the formation of gas bubbles between the two leaflets of the membrane. The present paper focuses on the thermodynamics of IMC, namely, on the minimum work required to form an intramembrane cavity. The minimum work can be separated into two parts, one that depends on the volume and number of gas molecules in the bubble and another that depends on the bubble geometry. Minimization of the second part at a fixed bubble volume determines the optimized bubble shape. In homogeneous cavitation this part is proportional to the bubble surface area and therefore the bubble is spherical. In contrast, in IMC the second part is no longer a simple function of the bubble area and the optimized cavity is not spherical because of the finite elasticity of the membrane. Using a simplified assumption about the cavity shape, the geometry-dependent term is derived and minimized at a fixed cavity volume. It is found that the optimized cavity is almost spherical at large bubble volumes, while at small volumes the cavity has a lenslike shape. The optimized shape is used to analyze the minimum work of IMC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alteration of interleaflet coupling due to compounds displaying rapid translocation in lipid membranes

The spatial coincidence of lipid domains at both layers of the cell membrane is expected to play an important role in many cellular functions. Competition between the surface interleaflet tension and a line hydrophobic mismatch penalty are conjectured to determine the transversal behavior of laterally heterogeneous lipid membranes. Here, by a combination of molecular dynamics simulations, a con...

متن کامل

Interleaflet coupling and domain registry in phase-separated lipid bilayers.

There is clear evidence of an interleaflet coupling in model lipid/cholesterol membranes exhibiting liquid-liquid phase separation. The strength of this coupling is quantified by the mismatch free energy, γ. We calculate it using a molecular mean-field model of a phase-separated lipid/cholesterol bilayer and obtain values that increase as the concentration of saturated lipids in the coexisting ...

متن کامل

Probing Membrane Viscosity and Interleaflet Friction of Supported Lipid Bilayers by Tracking Electrostatically Adsorbed, Nano-Sized Vesicles.

Particle tracking is used to measure the diffusional motion of nanosized (≈100 nm), lipid vesicles that are electrostatically adsorbed onto a solid supported lipid bilayer. It is found that the motion of membrane-adhering vesicles is Brownian and depends inversely on the vesicle size, but is insensitive to the vesicle surface charge. The measured diffusivity agrees well with the Evans-Sackmann ...

متن کامل

Roles of Interleaflet Coupling and Hydrophobic Mismatch in Lipid Membrane Phase-Separation Kinetics

Characterizing the nanoscale dynamic organization within lipid bilayer membranes is central to our understanding of cell membranes at a molecular level. We investigate phase separation and communication across leaflets in ternary lipid bilayers, including saturated lipids with between 12 and 20 carbons per tail. Coarse-grained molecular dynamics simulations reveal a novel two-step kinetics due ...

متن کامل

Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers.

Plasma membranes of cells are asymmetric in both lipid and protein composition. The mechanism by which proteins on both sides of the membrane colocalize during signaling events is unknown but may be due to the induction of inner leaflet domains by the outer leaflet. Here we show that liquid domains form in asymmetric Montal-Mueller planar bilayers in which one leaflet's composition would phase-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 87 2  شماره 

صفحات  -

تاریخ انتشار 2013